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1. Introduction

Standard thermal leptogenesis [1] provides a simple and elegant explanation of the origin of

matter. It is a natural consequence of the seesaw mechanism, and it is perfectly consistent

with the small neutrino masses inferred from neutrino oscillation data [2].

Thermal leptogenesis works without and with supersymmetry. In the latter case, how-

ever, there is a clash with the ‘gravitino problem’ [3 – 5]: the large temperature required

by leptogenesis exceeds the upper bound on the reheating temperature from primordial

nucleosynthesis (BBN) in typical supergravity models with a neutralino as lightest super-

particle (LSP) and an unstable gravitino. If the gravitino is the LSP, the condition that

relic gravitinos do not overclose the universe yields an upper bound on the reheating tem-

perature [6]. Furthermore, the next-to-lightest superparticle (NLSP) is long lived, and one

has to worry about the effect of NLSP decays on nucleosynthesis.

It is remarkable that, despite these potential problems, a large leptogenesis tempera-

ture of order 1010 GeV can account for the observed cold dark matter in terms of thermally

produced relic gravitinos [7]. Requiring consistency with nucleosynthesis yields constraints

on the superparticle mass spectrum. Due to improved analyses of BBN, the original pro-

posal of a higgsino NLSP is no longer viable, and also other possible NLSPs are strongly

constrained. The case of a stau NLSP is cornered by bounds following from catalyzed

production of 6Li [8], with the possible exception of a large left-right mixing in the stau

sector [9]. In some models a sneutrino [10] or a stop [11] can still be a viable NLSP.

Recently, it has been shown that in the case of small R-parity and lepton number break-

ing, such that the baryon asymmetry is not erased by sphaleron processes [12], thermal

leptogenesis, gravitino dark matter and primordial nucleosynthesis are naturally consis-

tent [13]. Although the gravitino is no longer stable, its decay into standard model (SM)
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particles is doubly suppressed by the Planck mass and the small R-parity breaking param-

eter. Hence, its lifetime exceeds the age of the universe by many orders of magnitude, and

it remains a viable dark matter candidate [14]. Gravitino decays lead to characteristic sig-

natures in high energy cosmic rays. The produced flux of gamma-rays [14, 13, 15 – 17] and

positrons [18, 17] may explain the observed excess in the EGRET [19] and HEAT [20] data.

This hypothesis will soon be tested by the satellite experiments FGST and PAMELA.

In this paper we study the implications of leptogenesis and gravitino dark matter with

broken R-parity on the mass spectrum of superparticles. Since the unification of gauge

couplings in the minimal supersymmetric extension of the standard model (MSSM) is one

of the main motivations for low-energy supersymmetry, we shall focus on versions of the

MSSM with universal boundary conditions for scalar and gaugino masses at the grand

unification (GUT) scale. As we shall see, the corresponding spectrum of superparticle

masses will be fully covered at the LHC. This is the main result of our analysis.

After some comments on R-parity violation in section 2, we discuss the lower bound on

the reheating temperature from leptogenesis and the upper bound on the NLSP mass from

gravitino dark matter in section 3. Section 4 deals with constraints on MSSM parameters

from low-energy observables, and the results of our numerical analysis are presented in

section 5, followed by some conlusions in section 6.

2. Constraints on R-parity violation

Phenomenological aspects of R-parity violation have been widely discussed in the litera-

ture [21]. Here we are interested in the case of small R-parity and lepton number breaking

which was investigated in [14, 13, 17]. The details strongly depend on the flavour structure

of R-parity violating couplings and the pattern of supersymmetry breaking. For complete-

ness, we recall in the following the order of magnitude of bounds on R-parity violating

couplings, the corresponding lifetimes of gravitino and NLSP, and in particular the depen-

dence on the gravitino mass.

Stringent constraints on the lepton number and R-parity violating interactions

W∆L=1 = λikjlie
c
j lk + λ′

kjid
c
iqjlk (2.1)

are imposed by baryogenesis. Both operators contain lepton doublets. Together with

sphaleron processes they therefore influence the baryon asymmetry at high temperature

in the early universe. The requirement that an existing baryon asymmetry is not erased

before the electroweak transition typically implies [12]

λ , λ′ < 10−7 . (2.2)

Remarkably, for such a small breaking of R-parity a gravitino LSP has a lifetime much

longer than the age of the universe [14] because of the double suppression of the decay rate

by the inverse Planck mass and the R-parity breaking coupling. One then obtains for the

gravitino lifetime (cf. [13])

τ3/2 ∼ 1025s

(
λ

10−8

)−2

η

(
m̃

m3/2

)( m3/2

100 GeV

)−3

, (2.3)
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where m̃ ∼ O(100 GeV) is a characteristic supersymmetry breaking mass scale. In the

case of light gravitinos, m3/2 ≪ m̃, where only the decay into photon neutrino pairs is

kinematically allowed, η = 1 has been assumed in [13]. For heavier gravitinos, decays

into W-boson lepton and Z-boson lepton pairs are also possible, and we only know that

η = O(1) [17]. In particular, the relation between gravitino lifetime and gravitino mass

depends on the pattern of supersymmetry breaking.

In the case of a small breaking of R-parity, with an unstable gravitino LSP, the NLSP

lifetime becomes very short,

cτNLSP ∼ 10 cm

(
λ

10−8

)−2 ( mNLSP

100 GeV

)−1

. (2.4)

For couplings λ, λ′ > 10−14, the NLSP lifetime becomes shorter than 103 s. In case of

a stau NLSP, superparticle decays then do not affect the primordial abundances of light

elements. Hence, baryogenesis, primordial nucleosynthesis and gravitino dark matter can

be consistent in the range

10−14 < λ, λ′ < 10−7 . (2.5)

For a bino NLSP, a lifetime shorter than 0.1 s, i.e., couplings λ, λ′ > 10−12 are required by

consistency with BBN.

The analysis of constraints on the superpotential terms (2.1) can be extended to general

R-parity breaking mass terms [17], yielding again a range of allowed parameters. One

finds that possible contributions to neutrino masses are negligable, once the cosmological

constraints are satisfied.

Decaying gravitino dark matter can contribute to the EGRET and HEAT anomalies

for a gravitino lifetime τ3/2 ∼ 1026 s. For a gravitino mass m3/2 ∼ 10 GeV, and assuming

η ≃ 1 in eq. (2.3), this requires R-parity violating couplings λ ∼ 10−7. As we shall see,

universal boundary conditions for gaugino masses favour larger gravitino masses, in the

range

10 GeV < m3/2 < 500 GeV , (2.6)

which, for fixed gravitino lifetime and η ∼ 1, corresponds to the range of R-parity violating

couplings

10−10 < λ < 10−7 . (2.7)

Note that for couplings below ∼ 10−9, most NLSPs decay outside the detector. However,

for couplings above ∼ 10−11, corresponding to lifetimes shorter than ∼ 10−3 s, some NLSP

decays may still be observable in the detector [22].

How can the phenomenologically required small R-parity violating couplings arise?

In [13] an example was presented, where the spontaneous breaking of R-parity is tied to

B-L breaking. Recently, it has been shown that also the breaking of left-right symmetry

can lead to small R-parity breaking [23].

3. Thermal leptogenesis

Let us now consider standard thermal leptogenesis as the source of the cosmological baryon

asymmetry. In the high-temperature phase of the early universe thermally produced right-
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handed neutrinos generate an asymmetry in B-L, which leads to a baryon asymmetry via

sphaleron processes. In the case of hierarchical right-handed neutrinos, and neglecting

flavour effects, the baryon density relative to the photon density is given by (cf. [2])

nB

nγ
≃ −1.04 × 10−2ǫ1κ, (3.1)

where ǫ1 is the CP asymmetry in the decay of the lightest right-handed neutrino N1 into a

pair of lepton (L) and Higgs (Hu) doublets, the efficiency factor κ represents the effects of

washout and scattering processes, and we have assumed a supersymmetric thermal plasma.

The CP asymmetry ǫ1 satisfies an upper bound because of the seesaw relation, which for

supersymmetric models reads [25, 24, 26],

|ǫ1| ≡

∣∣∣∣
Γ(N1 → L + Hu) − Γ(N1 → Lc + Hc

u)

Γ(N1 → L + Hu) + Γ(N1 → Lc + Hc
u)

∣∣∣∣ .
3M1

8π〈Hu〉2
∆m2

atm

m1 + m3
. (3.2)

Here mi, with m1 < m2 < m3, are the mass eigenvalues of the light neutrinos and M1 is the

mass of the right-handed neutrino N1. The atmospheric neutrino mass squared difference is

determined from neutrino oscillation experiments as ∆m2
atm ≃ (2.5± 0.2)× 10−3eV2. Note

that the upper bound on |ǫ1|, and therefore the maximally generated baryon asymmetry,

increases proportional to the heavy Majorana mass M1.

The efficiency factor κ has to be determined by solving the Boltzmann equations. In

the most interesting case of zero initial abundance of the right-handed neutrinos one finds

for its maximal value, with and without supersymmetry, κ ≃ 0.2 [27, 28]. Using (3.2), one

then obtains from the observed baryon asymmetry [29],

nB

nγ
= (6.21 ± 0.16) × 10−10 , (3.3)

the lower bound on the right-handed neutrino mass

M1 >∼ 1.4 × 109 GeV

(
〈Hu〉

174GeV

)2

(3.4)

at the 3σ level of nB/nγ and ∆m2
atm. The corresponding lower bound on the reheating

temperature is about a factor two smaller [30]. In the following analysis we shall therefore

use as an estimate

TR >∼ 1 × 109 GeV. (3.5)

Note that this bound on the reheating temperature only applies for hierarchical right-

handed neutrinos. In the case of quasi-degenerate heavy neutrinos it is relaxed. The

bound also assumes thermal equilibrium, and it is modified once the reheating process is

taking into account. For instance, in the case of reheating by inflaton decays, the bound

increases by about a factor of two [28].

Relic gravitinos with masses larger than 1GeV contribute to cold dark matter. In

the following analysis we identify the thermally produced abundance Ω3/2h
2 with the 2σ

upper bound on the dark matter abundance deduced from the CMB anisotropies. From

the WMAP 5-year results one obtains [29],

Ω3/2h
2 ≡ ΩDMh2 ≃ 0.1223 . (3.6)
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The thermal production of gravitinos is dominated by QCD processes. To leading

order in the gauge coupling we find

Ω3/2h
2 ≃ 0.5

(
100 GeV

m3/2

)(mgluino

1 TeV

)2
(

TR

1010 GeV

)
, (3.7)

where mgluino is the physical gluino mass. Note that the coefficient1 is about a factor two

larger than in the analyses [31]. This is due to the 2-loop running of the gluino mass, which

has been taken into account. Electroweak contributions to thermal gravitino production

further increase the abundance by about 20%. In our numerical analysis we shall take this

into account following [32]. Note that the gravitino production rate has an O(1) uncertainty

due to unknown higher order contributions and nonperturbative effects [31]. Resumma-

tion of thermal masses increases the production rate by about a factor of two [33]. We

also neglect nonthermal contributions to gravitino production, in particular from inflaton

decay [34], which are usually subdominant at the considered high temperatures.

Our main interest are constraints on gluino and NLSP masses for gravitino dark matter.

It is then convenient to rewrite (3.7) as

mNLSP ≃ 310 GeV

(
ξ

0.2

)( m3/2

100 GeV

)1/2
(

109 GeV

TR

)1/2

, ξ =
mNLSP

mgluino

, (3.8)

where the ratio ξ is fixed by the boundary conditions of the soft supersymmetry breaking

parameters. For each gravitino mass and reheating temperature, eq. (3.8) then gives the

NLSP mass for which the observed dark matter density is obtained. The maximal NLSP

mass is reached for m3/2 = mNLSP,

mNLSP <∼ 980 GeV

(
ξ

0.2

)2 (
109 GeV

TR

)
. (3.9)

In this paper, we focus on thermally produced gravitino dark matter. A high reheating

temperature can also be consistent with leptogenesis in the case of very heavy gravitinos,

as in anomaly mediation [35] or mirage mediation [36, 37]. In those models, the gravitino

can have a mass of about 100 TeV and thus decays before BBN starts. However, these

models have several intrinsic difficulties. In the case of anomaly mediation, it is difficult to

explain the g − 2 anomaly together with the b → sγ constraint, since the gaugino masses

are controlled by the beta functions. In mirage mediation models, one often has a light

modulus field whose decay produces too many gravitinos [38]. Hence, the heavy gravitino

scenario appears to be phenomenologically disfavoured.

4. Models and low-energy observables

In order to illustrate the implications of leptogenesis and gravitino dark matter on su-

perparticle masses, we now study two typical boundary conditions for the supersymmetry

breaking parameters of the MSSM at the grand unification (GUT) scale:

(A) m0 = m1/2, a0 = 0, tan β , (4.1)

1Varying superparticle masses (cf. section 4), the value can change by about 10%.
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with equal universal scalar and gaugino masses, m0 and m1/2, respectively; in this case a

bino-like neutralino becomes the NLSP. The second boundary condition is

(B) m0 = 0, m1/2, a0 = 0, tan β , (4.2)

which yields the right-handed stau as NLSP. In both cases, the trilinear scalar coupling a0

is put to zero for simplicity. The ratio tan β of the Higgs vacuum expectation values and the

universal gaugino mass m1/2 are the two remaining independent variables. Superparticle

masses at the electroweak scale are obtained by solving the renormalization group equations

at 2-loop accuracy by means of SOFTSUSY 2.0.18 [39].

Low-energy observables yield a lower bound on superparticle masses. Since the thermal

gravitino abundance (3.7) increases quadratically with the gluino mass, this implies an up-

per bound on the reheating temperature. Together with the lower bound from leptogenesis

one then obtains a range of allowed reheating temperatures. In the same way, leptogenesis

and gravitino dark matter yield an upper bound on superparticle masses. Combined with

low-energy constraints, a window of allowed superparticle masses is obtained.

One of the strongest constraints on the MSSM parameter space follows from the lower

bound on the Higgs boson mass by LEP [40],

mh > 114.4 GeV (95%C.L.) . (4.3)

The bound is satisfied by enhancing radiative corrections to the Higgs potential, which

requires a large stop mass. The parameters of the stop sector are essentially controlled by

the gluino mass, i.e. m1/2, via the renormalization group evolutions; they are less sensitive

to the scalar mass m0. The potential is also affected by the trilinear stop coupling At for

sufficiently large a0. Although we put a0 = 0 in the numerical analysis, we shall comment

on the case a0 6= 0. In our analysis we use the top quark mass mt = 172.6 GeV [40].

Radiative corrections are taken into account at the 2-loop level by means of FeynHiggs

2.6.4 [41].

When the superparticles are light, they contribute significantly to rare processes. The

measured branching ratio Br(Bd → Xsγ) agrees with the SM prediction. The SUSY

contributions are dominated by the top-charged Higgs and stop-chargino diagrams. The

latter is enhanced by large tan β and interferes with the former. In our analysis we choose

the sign of the supersymmetric Higgs mass parameter µH such that the effect of the SUSY

contributions is reduced. Taking into account the theoretical uncertainties, we require for

the full MSSM prediction the conservative upper and lower bounds,

2 × 10−4 < Br(Bd → Xsγ) < 4 × 10−4. (4.4)

The numerical analysis is based on SusyBSG 1.1.2 which takes NNLO contributions partially

into account [42].

The two observables discussed above constrain the MSSM parameters. In contrast,

the apparent discrepancy between the measured value of the muon anomalous magnetic

moment [43] and the SM prediction may be an effect of supersymmetry, which then favours

– 6 –
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a certain range of MSSM parameters. Recently, the hadronic contribution to the SM pre-

diction has been updated using e+e− data [44]. The current discrepancy with experiment

is given by [45]

aµ(exp) − aµ(SM) = 302(88) × 10−11 , (4.5)

which corresponds to a 3.4σ deviation. An explanation of this discrepancy by hypothetical

errors in the determination of the hadronic SM contribution appears unlikely [45]. In con-

trast, supersymmetry can easily account for the discrepancy [46]. The SUSY contribution

is proportional to tan β and depends on sgn(µH). It is remarkable that the deviation from

the SM prediciton for aµ and the agreement for Br(Bd → Xsγ) require the same sgn(µH) in

the case of universal gaugino masses at the GUT scale. In the following, we use FeynHiggs

to evaluate the SUSY contribution to aµ at the 2-loop level.

Finally, the absense of pair production of heavy charged particles at LEP implies the

approximate lower mass bound [40]

mcharged > 100 GeV . (4.6)

In the next section we shall use superparticle masses obtained by means of SOFTSUSY.

5. Numerical analysis

We are now ready to determine the superparticle mass window and the allowed range of

reheating temperatures for the two examples of universal boundary conditions at the GUT

scale, which were discussed in the previous section.

In figure 1 the upper bound (3.9) on the NLSP masses is shown for reheating temper-

atures TR ≥ 1 × 109 GeV, which is the lower bound required by leptogenesis. In case (A)

with bino NLSP, the ratio ξ = mNLSP/mgluino, and therefore the upper bound on mNLSP,

are essentially independent of tan β. In contrast, for (B) with stau NLSP, one has a strong

dependence on tan β. The lower bound on mNLSP is determined by Br(Bd → Xsγ) and

the Higgs mass bound in case (A), and the charged particle and Higgs mass bounds in case

(B), respectively. We find the allowed mass ranges

(A) 130 GeV < mbino < 620 GeV , (B) 100 GeV < mstau < 490 GeV . (5.1)

Note that in case (B) upper and lower bounds correspond to different values of tan β. The

muon g-2 anomaly favours small NLSP masses in the range from 100 GeV to 300 GeV.

One also obtains upper bounds on the gravitino mass,

(A) m3/2 < 620 GeV , (B) m3/2 < 490 GeV . (5.2)

Both boundary conditions have a0 = 0. For negative a0, the Higgs boson potential is

modified in such a way that the dashed line in figure 1 moves to the left. We have checked

that the reheating temperature can then reach 6×109 GeV, whereas other observables are

– 7 –
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(a) (b)

Figure 1: Contours of constant reheating temperature, TR = (1− 4)× 109 GeV, with Ω3/2 = ΩDM

(solid lines) (cf. eq. (3.6)). The panels (a) and (b) correspond to the GUT boundary conditions (A)

and (B) with bino-like NLSP and stau NLSP, respectively. The choice m3/2 = mNLSP maximizes

the reheating temperature. The gray region is excluded by constraints from low-energy experiments:

the lower tan β part (left of the dashed line) does not satisfy the LEP Higgs mass bound; the higher

tan β part in (a) (left of the dotted line) is ruled out by Br(Bd → Xsγ); the higher tanβ part in (b)

(left of the dot-dashed line) does not satisfy the lower mass bound on charged particles from LEP.

Thermal leptogenesis is possible in the yellow and orange regions; the orange region is favored by

the muon g − 2 anomaly at the 2σ level.

not much affected. We therefore obtain for the range of reheating temperatures consistent

with leptogenesis and gravitino dark matter

TR = (1 − 6) × 109 GeV . (5.3)

Note that according to FeynHiggs, the theoretical uncertainty of the Higgs boson is about

1 GeV for mh ≃ 115 GeV. This corresponds to an uncertainty of 10 − 20% for the upper

bound on the reheating temperature.

We can also study superparticle masses as function of gravitino mass and reheating

temperature using eq. (3.8). The allowed NLSP mass range then depends on tan β. In the

case of bino NLSP, consider as an example

(A) tan β = 30 , ξ =
mbino

mgluino

= 0.17 − 0.19 . (5.4)

The left panel of figure 2 shows the bino mass yielding the observed dark matter abundance

as function of the gravitino mass for different reheating temperatures; the right panel is the

corresponding plot for the gluino mass. Upper mass bounds are obtained for the smallest

temperature of 1 × 109 GeV and the largest gravitino mass m3/2 = mbino,

(A) tan β = 30 : mbino <∼ 620 GeV , mgluino <∼ 3.1 TeV . (5.5)
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(a) (b)

Figure 2: Contours of constant reheating temperature in the mbino − m3/2 plane (a) and the

mgluino − m3/2 plane (b) for boundary condition (A) with bino NLSP (see caption of figure 1 for

details). In the dark gray region, the gravitino is not the LSP.

For smaller gravitino masses the bounds become more stringent. For instance, for m3/2 =

100 GeV, one obtains

mbino <∼ 270 GeV , mgluino <∼ 1.5 TeV . (5.6)

Note that these bounds are essentially independent of m0 and tan β, als long as m0 ∼ m3/2.

In the case of stau NLSP, there is a strong dependence on tan β. As an example, we

consider

(B) tan β = 10 , ξ =
mstau

mgluino

= 0.16 − 0.17 . (5.7)

ξ decreases with increasing tan β. Stau and gluino masses are shown in figure 3. Since the

ratio of NLSP and gluino mass is smaller, the mass bounds are now more stringent,

(B) tan β = 10 : mstau <∼ 490 GeV , mgluino <∼ 2.8 TeV . (5.8)

For a gravitino mass m3/2 = 100 GeV, one obtains

mstau <∼ 240 GeV , mgluino <∼ 1.5 TeV . (5.9)

Let us emphasize again the effect of the theoretical uncertainty in the evaluation of

the gravitino abundance, which is expected to be O(1) [31]. For instance, if the gravitino

production rate is larger by a factor 2, as suggested in [33], all reheating temperatures

in figures 1, 2 and 3 are by a factor 2 smaller. Hence, the superparticle mass range

consistent with thermal leptogenesis becomes narrower. On the other hand, a smaller

gravitino production rate would enlarge the parameter range consistent with leptogenesis.

– 9 –
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(a) (b)

Figure 3: Contours of constant reheating temperature in the mstau − m3/2 plane (a) and the

mgluino − m3/2 plane (b) for boundary condition (B) with stau NLSP (see caption of figure 1 for

details). In the dark gray region, the gravitino is not the LSP.

Finally, let us comment on other boundary conditions. We have chosen universal

gaugino masses, with m0 = m1/2 or m0 = 0 at the GUT scale. However, even for non-

universal gaugino masses we obtain almost the same results. The reason is that all the

bounds are controlled by the gluino mass. Reducing the gluino mass, the dark matter

bound on the reheating temperature is relaxed, but the low-energy constraints become

severer: supersymmetric contributions to the Higgs boson mass are suppressed, while they

are enhanced for Br(Bd → Xsγ). As a consequence, the maximal reheating temperature

remains almost the same as in the case of universal gaugino masses. On the other hand,

the low-energy constraints become weaker for scalar masses much larger than m1/2. One

can then reach reheating temperatures ∼ 1010GeV.

6. Conclusions and outlook

We have studied the implications of thermal leptogenesis and gravitino dark matter for

the mass spectrum of superparticles. In the case of broken R-parity the constraints from

nucleosynthesis are naturally fulfilled, and universal gaugino masses at the GUT scale are

possible, contrary to the case of stable gravitinos.

As an illustration, we have considered two boundary conditions which lead to a bino-

like NLSP and a stau NLSP, respectively. Low-energy observables and gravitino dark

matter together with thermal leptogenesis yield upper and lower bounds on NLSP and

gluino masses, which in both cases lie within the discovery range of the LHC. It is en-

couraging that the supersymmetric explanation of the muon g−2 anomaly favours smaller

masses within these mass windows.
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A cosmology with leptogenesis and gravitino dark matter also leads to the prediction

of a maximal temperature in the early universe. In the case of universal gaugino masses

at the unification scale we find the upper bound Tmax
R ≃ 6 × 109 GeV, which is somewhat

relaxed for large scalar masses. This bound has been obtained under the assumption of

thermal equilibrium, which appears unlikely for a maximal temperature. Nevertheless, it is

intriguing that the temperature Tmax
R is of the same order of magnitude as the critical for the

destabilization of compact dimensions in higher-dimensional supersymmetric theories [47].

The effect of the reheating process on the stabilization of extra dimensions and the relation

to baryogenesis and dark matter require futher investigations.

Gravitino decays produce a flux of photons and positrons, which can significantly con-

tribute to the EGRET and HEAT anomalies for a lifetime τ3/2 ∼ 1026 s. If these anomalies

are indeed related to gravitino decays, the satellite experiments FGST and PAMELA should

soon detect characteristic features in the photon and positron spectrum, respectively. Ob-

servation of a line in the gamma-ray spectrum by FGST and a rise with sharp cutoff in

the positron spectrum by PAMELA would lead to a determination of the gravitino mass.

This would considerably tighten the predictions for superparticle mass windows which will

be probed at the LHC.
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